
CSE 333
Section 7
Smart Pointers, C++, and Inheritance

Logistics
● Exercise 9

○ Due Wednesday (11/15) @ 10 pm

● HW3
○ Partner matching form due 11/16 @ 10 pm

○ Due Thursday (11/23) @ 10 pm

■ Relatively long HW, so please get started if you haven’t already

Smart Pointers!

Review: Smart Pointers
● std::unique_ptr (Documentation) – Uniquely manages a raw

pointer

○ Used when you want to declare unique ownership of a pointer

○ Disabled cctor and op=

● std::shared_ptr (Documentation) – Uses reference counting to
determine when to delete a managed raw pointer
○ std::weak_ptr (Documentation) – Used in conjunction with

shared_ptr but does not contribute to reference count

https://www.cplusplus.com/reference/memory/unique_ptr/
https://www.cplusplus.com/reference/memory/shared_ptr/
https://www.cplusplus.com/reference/memory/weak_ptr/

Using Smart Pointers
● Treat a smart pointer like a normal (raw) pointer, except now you won’t

have to use delete to deallocate memory!

○ You can use *, ->, [] as you would with a raw pointer!

● Initialize a smart pointer by passing in a pointer to heap memory:

unique_ptr<int[]> u_ptr(new int[3]);

○ For shared_ptr and weak_ptr, you can use cctor and op= to get a copy

shared_ptr<int[]> s_ptr(another_shared_ptr);

Using Smart Pointers cont.
● Want to transfer ownership from one unique_ptr to another ?

unique_ptr<T> V = std::move(unique_ptr<T> U);

● Want to get the reference count of a shared_ptr?
int count = s.use_count();

● Want to convert your weak_ptr to a shared_ptr?
std::shared_ptr s = w.lock();

Exercise 1

Change the following code to use smart pointers. Should each field be a unique, shared or
weak pointer?

Exercise 1

#include <memory>
using std::shared_ptr;
using std::unique_ptr;
using std::weak_ptr;

struct IntNode {
 IntNode(int* val, IntNode* node): value(val), next(node) {}

 ~IntNode() { delete value; }

 int* value;
 IntNode* next;
};

Exercise 1
#include <memory>
using std::shared_ptr;
using std::unique_ptr;
using std::weak_ptr;

struct IntNode {
 IntNode(int* val, IntNode* node) :
 value(unique_ptr<int>(val)), next(shared_ptr<IntNode>(node)) {}

 ~IntNode() { delete value; }

 unique_ptr<int> value;
 shared_ptr<IntNode> next;
};

Exercise 1
#include <memory>
using std::shared_ptr;
using std::unique_ptr;
using std::weak_ptr;

struct IntNode {
 IntNode(int* val, IntNode* node) :
 value(unique_ptr<int>(val)), next(shared_ptr<IntNode>(node)) {}

 ~IntNode() { delete value; }

 unique_ptr<int> value;
 shared_ptr<IntNode> next;
};

Example: Client Code

#include <iostream>

using std::cout;
using std::endl;
using std::shared_ptr;

int main() {
 shared_ptr<IntNode> head(new IntNode(new int(351), nullptr));
 head->next = shared_ptr<IntNode>(new IntNode(new int(333), nullptr));
 shared_ptr<IntNode> iter = head;
 while (iter != nullptr) {
 cout << *(iter->value) << endl;
 iter = iter->next;
 }
}

head
value

next

value

next

351

333

Ref count: 1

Ref count: 1

iter

Ref count: 2Ref count: 0

Ref count: 0Ref count: 2

Stack Heap

Example: Client Code

#include <iostream>

using std::cout;
using std::endl;
using std::shared_ptr;

int main() {
 shared_ptr<IntNode> head(new IntNode(new int(351), nullptr));
 head->next = shared_ptr<IntNode>(new IntNode(new int(333), nullptr));
 shared_ptr<IntNode> iter = head;
 while (iter != nullptr) {
 cout << *(iter->value) << endl;
 iter = iter->next;
 }
}

Nothing left on the heap!

Inheritance

Inheritance
● Motivation: Better modularize our code for similar classes!

● The public interface of a derived class inherits all non-private
member variables and functions (except for ctor, cctor, dtor, op=)
from its base class
○ Java analogue: A subclass inherits from a superclass

● Aside: We will be only using public, single inheritance in CSE 333

Polymorphism
● Polymorphism allows for you to access objects of related types

○ Allows interface usage instead of class implementation

● Dynamic dispatch: Implementation is determined at runtime via
lookup
○ Allows you to call the most-derived version of a function
○ Generally want to use this when you have a derived class

● virtual replaces the class’s default static dispatch with dynamic
dispatch
○ Static dispatch determines implementation at compile time

Dynamic Dispatch: Style Considerations
● Defining Dynamic Dispatch in your code base

○ Use virtual only once when first declared in the base class
○ Although in older code bases you may see it repeated on functions in

subclasses
○ All derived classes of a base class should use override to get the

compiler to check that a function overrides a virtual function from a base
class

● Use virtual for destructors of a base class – Guarantees all derived
classes will use dynamic dispatch to ensure use of appropriate
destructors

Dispatch Decision Tree
PromisedT* ptr = new ActualT();
ptr->Fcn(); // which version is called?

Is Fcn()
defined in

PromisedT?

Is PromisedT::Fcn()
marked as Dynamic

Dispatch? (virtual)

Static dispatch of
PromisedT::Fcn()

Dynamic dispatch
of most-derived
version of Fcn()
visible to ActualT

Yes

No No

Yes

Compiler
Error

Exercise 2

Exercise 2: static, dynamic, or error?
class Base {
 void Foo(); // static dispatch
 void Bar(); // static dispatch
 virtual void Baz(); // dynamic dispatch
};

class Derived : public Base {
 virtual void Foo(); // dynamic (for more derived)
 void Bar() override; // compiler error
 void Baz(); // still dynamic (sticky!)
};

Exercise 2: static, dynamic, or error?
class Base {
 void Foo(); // static dispatch
 void Bar(); // static dispatch
 virtual void Baz(); // dynamic dispatch
};

class Derived : public Base {
 virtual void Foo(); // dynamic (for more derived)
 void Bar(); // static dispatch
 void Baz() override; // still dynamic (sticky!)
};

Abstract Classes

Abstract Classes
● Pure virtual Functions – Functions without any implementation

○ Declaration Example: virtual int foo() = 0;
○ Used for creating an interface of a function

● Abstract Classes are those with one or more pure virtual functions
○ Creates an interface for the client to use without knowing its details
○ Requires a derived class to implement its functionality (cannot itself be

instantiated)

● Often used like an interface!
Usage Example: AbstractClass* a = new DerivedClass(params);

Example Abstract Class/Derived Class
using std::string;

class Fruit {
 public:
 Fruit() = default;
 virtual ~Fruit() {}

 // A fun fact
 virtual string FunFact() = 0;

};

using std::string;

class Banana : public Fruit {
 public:
 Banana() = default;
 virtual ~Banana() = default;

 string FunFact() override {
 return “It’s a berry”;
 }
};

Exercise 3

Exercise 3A: Abstract Animals
Create an Animal Abstract class. It should have a protected member
legs variable and a public num_legs pure virtual function. Try to
use good style!

Exercise 3A: Abstract Animals

class Animal {
 public:
 Animal() = default;
 virtual ~Animal() {}
 virtual int num_legs() const = 0;
 protected:
 int legs;
};

Create an Animal Abstract class. It should have a protected member
legs variable and a public num_legs pure virtual function. Try to
use good style!

Exercise 3B: Create an Animal Derived class
Now that you have made an abstract Animal class, try to make a implementation with a
derived class of Animal.

This is an open-ended question, so you are free to be imaginative with your implementation
of the abstract Animal class!

Exercise 3B: Create an Animal Derived class
class Dog : public Animal {
 public:
 Dog(int legs, string breed) : Animal(), legs(legs), breed(breed) {}
 virtual ~Dog() {}
 int num_legs() const override {
 return legs;
 }
 virtual int get_breed() const {
 return breed;
 }
 protected:
 string breed;
};

Casting

Different Flavors of Casting
● static_cast<type_to>(expression);

Casting between related types, checked at compile time.

● dynamic_cast<type_to>(expression);
Casting pointers of similar types (only used with inheritance), checked at
runtime.

● const_cast<type_to>(expression);
Adding or removing const-ness of a type

● reinterpret_cast<type_to>(expression);
Casting between incompatible types of the same size (doesn’t do float
conversion)

Tips with Casting
● Style: Use C++ style casting in C++

○ Tradeoff: Extra programming overhead, but provides clarity to your
programs

○ Be explicit as possible with your casting! This means if you notice
multiple operations in an implicit cast, you should explicitly write out each
cast!

● Read documentation of casting on which casting to use
○ Documentation: https://www.cplusplus.com/articles/iG3hAqkS/
○ The purpose of C++ casting is to be less ambiguous with what casts

you’re using

https://www.cplusplus.com/articles/iG3hAqkS/

Thanks for coming
to section!

